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SUMMARY

One of the many stages of wastewater treatment involves aerating the wastewater in order to remove

dissolved contaminants. This is an expensive process due to energy consumption. Sentry Water

Technologies have developed the Sentry sensor to monitor Carbon Consumption Rate (CCR) in

order to optimize the aeration process and prevent over and under-aeration. This tech brief explores

the processes and methods used to analyze the given data and create a model to forecast influent

airflow in an aeration basin in order to maintain a stable level of oxygen in the water.

INTRODUCTION

Wastewater treatment is a complex process

consisting of distinct stages that prepare

water to be returned to the environment. The

stage this project focuses on is the aeration

tank, where oxygen is pumped into the water

so microbiota can metabolize and remove

certain contaminants. Ideally, aeration is

managed such that Dissolved Oxygen (DO)

concentration stays within a certain range and

the water is not over or under-aerated.

Over-aeration is problematic because it

reflects money being wasted on energy usage.

Under-aeration, though less common in this

case, damages the biological process by failing

to meet the Biological Oxygen Demand

(BOD) of the microbiota at a given time. This

project aims to solve these problems by

utilizing data provided by Sentry sensors

which measure metabolic activity in water

flowing through the treatment plant. To do

this, we developed a model that could forecast

the estimated BOD of the water and used it to

predict the appropriate airflow that would

keep DO within an acceptable range.

FACILITY SYSTEM DESCRIPTION

Figure 1 was created based on Sentry’s process

diagram. The above utility consists of 6

consecutive water purification units: the bar

rack, grit chamber, primary clarifier, splitter

box, aeration tank, and secondary clarifier.

Measurements of CCR are taken in the

splitter box just before water enters the

aeration tank and inside the aeration tank just

before the water exits, as shown in Figure 1.

The tank has 3 identical lanes, each consisting

of at least 3 zones or “pockets”. Only data

from pockets 2 and 3 were given.
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DATA DESCRIPTION

The original data contained seven variables

measured between November 1, 2019 and

November 18, 2020:

● Datetime: Date + time the measurements

were taken

○ Initially contained two columns

due to both CCR being collected

more frequently than the rest of

the data

● CCR (Sensors 1 and 2): CCR before and

after aeration– measure of metabolic

activity in the water before and after

aeration, respectively, using the Sentry

probes

● Ammonia: Concentration of effluent

ammonia in the water, measured in mg/L

● Airflow: Measure of the amount of air

being pumped into the water in m
3
/hr

● DO (Pockets 2 and 3): Concentration of

dissolved oxygen in two of the zones in

mg/L

● Waterflow: Measure of influent water into

the aeration basin in L/s

● MLSS: Mixed liquor suspended solids–

concentration of suspended solids in the

aeration basin in mg/L

The two CCR measurements were taken

minutely, while the rest of the variables were

measured every 15 minutes.

Some points to note regarding unusual values:

● There was a gap in the month of February

in both CCR variables following a period

of inconsistent measurements

● There appeared to be a gap in the DO

Pocket 3 measurements, where from late

May to late July flatline at a value of 0.28

● A few of the Ammonia measurements gave

negative values

● MLSS had no data before May 2020 and

was the only variable measured after

October 2020

EXPLORATORY DATA ANALYSIS

Data Wrangling

Before beginning any analysis, any unusual

values were first confirmed to be due to

sensor error and were replaced with NAs. All

data after September 30, 2020 was then

eliminated since MLSS was the only variable

being measured after that point. Next, both

CCR variables were averaged into 15 minute

intervals using their respective means to allow

for a single date/time column across all

variables. Lastly, the estimated BOD (BOD

est.)  was created using,

BOD est. = Waterflow CCR (Sensor 1)•
Though not an exact value of BOD, this can

state roughly how much oxygen would be

required based on the metabolic rate in a

given volume of water.

Exploratory Data Analysis (EDA) and

Conclusions

To help with the EDA, we made an interactive

shiny app to compare the relationships

between the different variables across

different time scales.

Figure 2– The main takeaway from the EDA

was the trend in hours 5-10 among the three

above variables. BOD est. is lower during this

time, and airflow decreases to accommodate

for this. However, airflow is not being lowered

enough, which results in over-aeration

occurring as high as 79% of the time. This led

to the idea of creating an airflow model to

further reduce aeration energy usage.
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STATISTICAL ANALYSIS and

RESULTS

More Data Wrangling

Based on the EDA, two columns were added

for month and hour into the dataset as

categorical variables to account for the

temporal patterns of the data. The data was

also further reduced to measurements after

March 5, 2020 because the inconsistencies in

the CCR data prior to that date were

disrupting the BOD est. data and

compromising the accuracy of the models.

Linear Regression for BOD est.

The first step was to develop a linear model to

forecast BOD est. All of the quantitative

variables were lagged by one step, allowing

BOD est. to be forecasted 15 minutes in

advance. To analyze the forecast performance,

the data was split into training and testing

sets by randomly selecting 70% of the data as

a training set. After generating models with

every possible predictor combination, a model

was picked based on a combination of the

Root Mean Squared Error (RMSE) and the

number of variables used. In other words, the

model should require as few variables as

possible while still maintaining a low enough

RMSE that it can effectively explain the data.

The final regression model is as follows:

BOD_estt = 38,480 + 0.608 (BOD_estt-1) +•
monthly coefficients + hourly coefficients

The final regression model had a RMSE of

19,430 relative to a mean of 69,490.

Random Forest Modeling for BOD est.

Wanting to improve on the regression model,

we decided to incorporate random forest (RF)

regression. The same process as earlier was

carried out for the RF models, but now three

more steps of lag for BOD were added for a

total of four incrementally lagged BOD est.

variables. As before, the most parsimonious

model was selected, which now included the

four lagged BOD ests along with month and

hour. This model had an RMSE of 15,710, but

it could not be easily interpreted because

random forest is a black box method. For this

reason, we are showing both models to our

stakeholders despite the RF model better

explaining the data.

Aeration Modeling

After creating a model for BOD est, a linear

regression model for aeration was created

based on instances of optimal airflow, defined

as when DO is between 1 and 2.5 mg/L. Using

the forecasted BOD est. as a predictor, the

RMSE of the model was 685 relative to a

mean predicted airflow value of 6,917m
3
/hr,

and had an R
2

value of 0.66. A RF model was

also created using the same criteria and had

an RMSE of 560 with the same mean as the

linear model.

Analysis of Optimal vs. Over-Aeration

Both models were then applied to instances of

over-aeration in the hopes that they would

predict a lower airflow than the actual value.

However, both models performed poorly by

predicting higher airflow on average. The

median and mean residuals of the airflow for

the regression and random forest models was

-178 and -200, and -24 and -17, respectively.

These results pointed towards modeling

airflow by using more specific instances of

optimal airflow.

‘Super Optimal’ Airflow Modeling
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Based on Figure 3, over-aeration occurs when

CCR is low, so subsetting by only optimal

airflow results in higher CCR which is not

representative of over-aeration. So, in a final

effort to improve the model, we narrowed

down the optimal airflow model to instances

where the optimal aeration CCR was lower

than the 75
th

percentile of the over-aerated

CCR in a given hour. This created a subset of

‘super optimal’ airflow that could better

account for periods of over-aeration. A

regression and a RF model were run for this

new data set and had a RMSE of 722 and 355,

respectively. Both models had a mean of

around 6,650 m
3
/hr and the regression model

also had an R
2

of 0.74.

The super-optimal models were then

applied to the over-aerated data. In units of

m
3
/hr, the median and mean residuals of the

airflow for the regression and random forest

models were

approximately

-17 and -63,

and 15 and 69,

respectively.

Based on the

table,  the

models most

often predict a

decrease in

airflow usage,

with the

difference

being as high

as 12% or

higher in

certain cases.

CONCLUSIONS

The overarching goal of this project was to be

able to effectively forecast airflow 15-60

minutes in advance using the predicted BOD

est. in order to account for periods of over and

under-aeration. While the airflow prediction

model applied to over-aeration data showed

relative success, we were not able to apply the

model to periods of under-aeration due to

time constraints. This would be the next

logical step with these findings, though

under-aeration is much less common than

over-aeration. Other modeling approaches

such as LASSO regression, leave-one-out

cross-validation, and rolling window

verification may aid in future analysis as well.

A major takeaway from this project is

that CCR plays an important role in

determining DO and a utility's ability to meet

BOD at a given time. Almost all instances of

over-aeration occur during low CCR intervals.

This implies that the Sentry sensors’

measuring processes can prove highly

valuable for regulating airflow in the aeration

tank, which is good news for our stakeholders.
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