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SUMMARY

In water treatment for potable use, it is crucial to consider the final product’s taste and odor; an odd

taste or smell will limit customer confidence in the quality and safety of the water they are drinking.

One primary compound responsible for taste and odor events in reservoirs is geosmin. Geosmin is

produced by algae and bacterium and causes water to take on an earthy or musty smell or flavor. The

Marston Forebay Reservoir serves Denver, CO with potable water and has seen increasing rates of

algal blooms since 2012. This Tech Brief focuses on exploring the relationship between geosmin

concentrations and basic water quality parameters and suggests methods to predict geosmin through

statistical modeling.

INTRODUCTION

The Marston Forebay has had problems with

taste and odor (T&O) compounds detectable

to humans. The chief compound responsible

for T&O episodes in this reservoir, geosmin, is

detectable at concentrations as low as 5 ng/L.

Geosmin is not directly harmful to humans,

but the presence of the unpleasant taste or

odor that it causes diminishes the consumer’s

confidence regarding the quality and safety of

this drinking water.

Testing for geosmin can take up to 48 hours,

during which the treatment plant, Denver

Water, may serve millions of gallons of

drinking water to its customers. However,

removing all geosmin from water is a very

expensive process, and treating for geosmin

is inefficient and uneconomical when

elevated concentrations are not present.

Because of this, Denver Water is interested in

investigating the relationships between easily

measured physical and chemical water quality

parameters (temperature, pH, etc.) and

geosmin, and leveraging those relationships

as possible indicators of increased T&O

compound concentrations.

FACILITY SYSTEM DESCRIPTION

Denver Water uses Marston Reservoir to

capture mountain runoff before being sent to

the water treatment facility. Several changes

have been made regarding the water

collection and testing processes at Marston

Reservoir over the past several years. These

changes include changes in sampling

locations and the installation of a Multilevel

Outlet Tower, which allows water to be drawn

and blended from various depths [1], and. In

2008, a speece cone (a mechanism to add

oxygen to the water) was installed in the

center of the reservoir. Three different types

of sampling methods occur at Marston

Reservoir: automatic sonde measurements,

manual sonde measurements, and grab

samples. The type, location, and time frame of

measurements vary.

DATA DESCRIPTION

Data has been collected at various sites

throughout the reservoir from 2012 to 2020.

Our team was provided with seven data sets,

five containing only water quality data, one

containing T&O-related data and nutrient

levels, and one containing both water quality

and T&O data. Sampling frequencies,

methodology, and location varied
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considerably across data sets. For example,

some data sets contained full vertical profiles

of the reservoir whereas others contained

measurements taken at a fixed depth. Some

data sets contained hourly measurements and

others contained monthly measurements, and

one dataset measured depth from the bottom

to the surface rather than vice versa.

Additionally, one data set completely lacked

depth measurements.

The original data contained measurement

errors, likely due to faulty sensors. For

example, two dates in late 2020 measured

depths greater than 300 meters and recorded

pH values well above the standard limit of 14,

neither of which are possible in the Marston

Forebay.

EXPLORATORY DATA ANALYSIS

Our exploratory data analysis (EDA) centered

on investigating visual relationships between

geosmin and common water quality

parameters. The first, and most significant,

issue we encountered was a lack of synchrony

between geosmin measurements and water

quality measurements. To solve this, we

matched geosmin measurements to the water

quality measurement taken at the nearest

point in time. Because we did not know how

stable the water quality parameters were over

time, we chose to create five datasets

containing geosmin and water quality

measurements taken within 30 minutes, 1

hour, 2 hours, 12 hours, and 24 hours of each

other, respectively. Furthermore, due to the

lack of depths in one data set, we averaged all

individual profiles of the reservoir across their

depths.

Another issue we encountered in our EDA was

that high geosmin levels strongly distorted

our graphs, making it impossible to see any

clear relationships. To solve this, we used the

logarithm of the geosmin values in our plots.

However, this still failed to present any clear

relationship between the variables. We

proceeded to use boxplots to explore possible

seasonality of water quality components

and/or geosmin. The results of this were

generally inconclusive, though we were able to

observe that specific conductivity and

dissolved oxygen measurements seemed to

reach their local extreme values during

months when geosmin levels were at their

highest.

STATISTICAL ANALYSIS and

RESULTS

All of the models were created using stratified

random sampling with a 75%/25% test/train

split. To begin exploring the relationship

between geosmin and water quality

measurements, we defined a geosmin event as

any geosmin reading above 5 ng/L. Water

quality parameters used for modeling are

specific conductivity (uS/cm), dissolved

oxygen (DO) (mg/L), pH, temperature (ºC),

and turbidity (NTU). Each modeling method

that we employed was repeated for each of the

5 time frames we split the data into.

In order to determine model performance, we

collected three different metrics; (1)accuracy,

the proportion of correct predictions,

(2)sensitivity, the proportion of samples

correctly predicted to be below 5 ng/L, and

(3)specificity, the proportion of samples

correctly predicted to be above 5 ng/L.

Linear Regression

Our first attempt to model geosmin employed

multiple linear regression. We used the test

data set to predict geosmin levels, and then

classified the results as events or non-events

to determine model accuracy. As shown by the

low values of R-squared and accuracy in Table

1, this model’s performance appeared

inadequate, which led us to explore

non-parametric models.

Time Frame ∓30

min

∓ 1

hr

∓2 hr ∓ 12

hr

∓ 24

hr

Multiple

R-squared

0.016 0.015 0.021 0.035 0.043

Accuracy (%) 48 42 38 48 43
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Random Forest Regression

Our second attempt was to build a Random

forest regression model. Random forest

regression uses a bootstrapping sampling

technique, where subsets of observations are

created from the original data set, and then

each subset uses a subset of predictor

variables to create a decision tree. Our model

used 5,000 decision trees and then averaged

the outputs to find the most likely result.

Figure 1 shows the logarithm of the measured

geosmin and the predicted log geosmin for the

30 minute data, as well as the boundaries for

classification.

Table 2 shows the accuracy of the results. This

model sees a significant increase in accuracy

compared to the multiple linear regression

model, but it still fails to classify nearly 1 out

of every 4 events correctly.

Time Frame ∓30

min

∓ 1

hr

∓2 hr ∓ 12

hr

∓ 24

hr

Accuracy (%) 77 76 76 74 75

Random Forest Classification

The final model we chose to use was a random

forest classifier. Random forest classification

is set up the same as regression, but rather

than averaging the output values, the

classification that is predicted the most across

all trees is chosen as the result. Our model

predicted whether a value of geosmin was an

event, over 5 ng/L. Table 3 shows the model

fits well overall, as proven by the high

accuracy, sensitivity, and specificity values.

Time Frame ∓30

min

∓ 1

hr

∓2 hr ∓ 12

hr

∓ 24

hr

Accuracy (%) 97 90 93 92 93

Specificity (%) 98 85 95 93 95

Sensitivity (%) 96 100 90 88 88

Based on the random forest classification

model, Figure 2 shows that conductivity and

DO are the most important variables to be

considered when predicting geosmin.

Temperature and turbidity are relatively less

important variables to consider, however all

of the water quality parameters are significant

to the accuracy of the model.

Across all models, the 30 minute time frame

resulted in the highest prediction

performance. There was not a noticeable

breaking point at which the time elapsed

became too large to create a beneficial model.

We created an interactive Shiny app

dashboard to visualize the data and results of

our models. The dashboard consists of 5

parts. We included a plot of the water quality

data and allowed the variables to be visualized
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over time and subset by year. We then look at

the relationship between the variables at each

of the 5 time frames by creating plots,

summary statistics, and allowing a

comparison between two plots. We next plot

the relationship between variables from each

sampling location, allowing a smoothing

feature and a third variable to allow an

additional plotting dimension. Our last

visualization compares the variables at

different locations in the reservoir, allowing

for a comparison between grab data and

profile data. Lastly, we used our two random

forest models to provide a section to forecast

geosmin based on user-input water quality

measures. The prediction section provides a

predicted geosmin measurement (ng/L) and

whether or not it is predicted to be an event.

CONCLUSIONS

The models we produced indicate that there is

a relationship between geosmin

concentrations and basic water quality

parameters. Although the precise nature of

this relationship remains unclear due to the

non-parametric methods we used, the

Marston treatment team should be able to

leverage water quality data to anticipate and

prepare for taste and odor events.

We recommend synchronous measurements

of water quality at all the times that geosmin

samples are recorded. This allows for less

variance caused by the lag between

measurements, and allows trends to be purely

based on relationships with geosmin and

water quality. In addition to the synchronous

time measurements, we advise taking all the

measurements at various locations across the

reservoir to account for possible heterogeneity

of the water. Lastly, we would recommend

measuring additional easily attainable water

quality parameters, such as ORP, depth,

chlorophyll at all of the locations and times,

that can be included in the modeling of the

data. In order to avoid making false

assumptions with N/A measurements, we

were not able to include several parameters

that could have been important in modeling

geosmin levels.

Overall, the models produced did well in

predicting the values of geosmin. Though the

models are still inclined to predict false

positives, they are highly accurate and provide

a guideline as to when Denver Water should

be cautious of high geosmin levels in the

water and can be used as a notification to test

geosmin more frequently.
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